Room to Maneuvre? Party Strategies in the European Political Space*

Guido Tiemann, tiemann@ihs.ac.at
Institute for Advanced Studies, Vienna, Austria

Abstract
Research on voting behaviour in elections to the European Parliament (EP) has demonstrated that voters tend to systematically favour parties which are “more extreme” than their personal ideological or programmatic preferences. This paper accounts for centrifugal tendencies in EP elections by a two-step model: (1) We begin with an evaluation of centrifugal tendencies in electoral behaviour which stem from spatial (symbolic politics and directional voting; institutional stalemate and the discounting model) and non-spatial motives (party identification, economic voting). (2) We link electoral behaviour with dominant strategies adopted by vote-maximizing political parties and apply the party competition model by Adams, Grofman, and Merrill to the analysis EP elections. Our findings are of substantive significance, because they explain why issue entrepreneurs may successfully mobilize extremist and/or euroskeptic constituencies in some member states, but not in others.

*Paper prepared for the EPOP 2014 Conference, University of Edinburgh, 12-14 September 2014
1. Introduction

As critics have lamented, predictions derived from complicated models of spatial voting and party competition have often been at odds with empirical realities (cf., most prominently, Green and Shapiro, 1996; Shapiro, 2005). Given a number of idealized preconditions, the classical Downsian model of party competition predicts the convergence of party platforms towards the position of the median voter. Yet, this expectation is at odds with empirical realities in almost any democratic polity. Elections are frequently not dominated by forces of the center which are close to the median voter, instead electoral behaviour and party competition are driven and dominated by “moderate extremists”. While this is a feature of national parliament elections, centrifugal competition is even more powerful in European Parliament elections (henceforth: EP elections). There are a number of countries where voters tend to prefer extremist and/or euroskeptic parties, but there are also some countries where these actors do not gain extensive electoral support and do not manage to move political competition towards their non-centrist ideal points.

There are (at least) two principal reasons why we focus on EP elections: In substantive terms, EP elections are important per se. Centrifugal patterns of party competition are even more common in EP elections than in the respective national parliament elections. The well-established “second-order election model” posits that turnout in EP elections is significantly lower, that large, centrist, integrationist parties in government tend to lose votes, while smaller, often extremist or euroskeptic parties tend to do well. These patterns of vote gains and losses by and large follow a cyclical trajectory that corresponds to the assumed government popularity within national electoral cycles (cf., among others, Hix and Marsh, 2007; Marsh, 1998; Reif, 1984, 1997; Schmitt, 2005). In conceptual terms, EP elections provide a unique laboratory to test theoretical models of party competition. Effectively, EP elections are organized as 27 parallel in the EU member states. These features, along with the provision of rich empirical material by the European Election Studies survey series provide an inimitable opportunity to study determinants of vote choice and to explore the context-dependency of party competition.

Any attempt to explore the robust empirical regularities embodied in the second-order election model requires an analysis of centripetal and centrifugal forces which impact on vote choice and party competition. Building on Cox (1990) we define centripetal incentives as factors which motivate voters to pick centrist parties and thus encourage parties to present centrist policies, while centrifugal incentives motivate both voters and parties to prefer more extreme policies. In theoretical terms, we pick up the con-
cept by Merrill and Grofman (1999) and, most significantly, Adams et al. (2005) which conceptualizes vote choice and party strategy as two inter-linked analytical stages: On the demand side, voters evaluate party alternatives by a number of different criteria. First and foremost, vote choice is determined by their respective policy positions. Voters are attracted by parties whose stances either resemble their own positions or who promise to bring about policy change in a desired direction. On the supply side, we assume that political parties are vote seekers and adapt their policy positions in order to maximize their vote shares. In other words, political parties react to centrifugal and centripetal patterns of electoral behaviour by optimizing their policy portfolio in order to attract as many voters as possible. Therefore, this paper presents a two-step model linking vote choice and party competition in elections to the European Parliament.

We first review spatial models of vote choice and specifically stress those specifications which account for the success of non-centrist political parties. Within the narrower family of spatial voting models, voters may care to select parties which agree with their ideological or programmatic ideal points (“proximity voting”). Given the constraints elected officials face to deliver their advertised policy goals, voters may factor in checks, balances, political compromise and an abundance of veto players and “overshoot the mark” to get their desired policies enacted (“discounting” or “compensational voting”). Ultimately, voters may cease to care about preferred positions on a policy continuum, but instead aim to push for change into their desired direction (“directional voting”). These alternative specifications refer to much more than little controversies in a tiny subfield of electoral research, but come with substantive implications: the classical proximity voting perspective usually tends to imply the victory of centrist parties, compensational and directional voting predict the strong performance less-centrist actors.

In the subsequent step, we posit political parties strategically “factor in” expected dynamics of electoral behaviour. Because political parties cannot (easily) influence non-spatial determinants of vote choice such as party identification or evaluations of the economy, we assume their core strategy in electoral campaigns is to strategically adapt to expected voting behaviour in order to maximize their vote share. We apply iterative algorithms which compute optimal policy positions in one or two-dimensional political space which facilitate the identification of Nash equilibria. Given that the “threat of abstention” tends to be even more forceful in European than in national elections, we expect party leaders to direct their campaign at their specific electoral constituencies rather than at the alleged position of the median voter. Taken together, these dynamics provide a valid explanation for the strong performance of ideologically extreme or euroskeptic platforms in elections to the EP.
To address these interconnected issues of supply and demand, of vote choice and party strategy in a series of consecutive steps: we first review current theories of vote choice and party strategy and revise them for an application to EP elections (sections 2 and 3). The next section presents the dataset at hand, explains and justifies crucial coding and operationalization decisions (section 4). Having clarified the theoretical and empirical precondition, the two subsequent section presents the results of our empirical analysis (sections 5 and 6). The final section wraps up the key results and concludes (section 7).

2. Theories of Vote Choice in EP Elections

This paper examines vote choice and political competition in EP elections. Within the spatial voting framework, voters are either assumed to opt for the ideologically most proximate party (“proximity voting”), or they may opt for a party that is supposed to bring about political change in the desired direction (“directional voting”), or voters may “overshoot the mark” (Enelow et al., 1993) when political gridlock, the presence of multiple veto players, and a lack of political responsiveness cast doubt on the effectiveness of their decisions and the responsiveness of political elites (“discounting” or “compensational voting”). In the remainder of this section we briefly introduce these concepts and apply them to the analysis of vote choice in EP elections.

2.1. Proximity Models and the Failure of the Center

While there are different camps and many traditions, any spatial voting model claims two broad things: (i.) the ideal points of voters and the programmatic positions of alternative political parties may be meaningfully related in some political space, and (ii.) these relations matter for party evaluation and vote choice. Any of the more specific spatial models refers to a two-dimensional “European political space” (Marks and Steenbergen, 2002). The first dimension is supposed to capture domestic political contestation on a Likert scale raging from left to right. The second dimension indicates voter positions toward European integration ranging from euroskeptic (“has already gone too far”) to integrationist positions (“should be pushed further”).

In Downsian proximity voting models, both voters and parties are represented by points within the political space. Everything else being equal, voters evaluate party alternatives by proximity. Thus, a party which is located closely to the voter’s preferences on \(n \) individual dimensions yields a high utility, while another party that proposes policies which are distant from the voter’s ideal point on either dimension should
generate considerably smaller utilities. Turning to vote choice, the principle of utility maximization implies that an individual voter v_1 prefers the electoral platform that offers him/her the highest utility. Assuming separable preferences and identical salience of the domestic and the European issue dimension, the utility of party j for voter i declines with their Euclidean distance:

$$U^p_i(j) = -||V - P||^2 = -\sum_{a=1}^{n} \alpha_a(v_{i[a]} - p_{i,j[a]})^2$$

The median voter theorem posits that political competition converges towards the position of the median voter. Centrist parties that represent the median voter are expected to be backed by a vast majority of voters, while more extremist, fringe parties should end up virtually unsupported (Black, 1958; Downs, 1957). Nevertheless, the median voter theorem depends on a series of very restrictive assumptions and conditions. As shown by Bernard Grofman (2004, 26-27), the convergence theorem by Downs and Black rests on a very demanding catalog of about fifteen specific assumptions. These include, among others, the provision of only two political parties, a plurality electoral system, only one dimension of political competition, fully informed voters and parties, and short term rational actors who only care about winning and do not look beyond the current election.

These basic assumptions may never be matched in empirical, real-world political competition. Given the multidimensional “European political space” introduced above, the provision of a multitude of political parties and electoral lists, and the application of PR rules in any of the 27 member states of the European Union, to name only a few, we cannot neither predict nor expect the emergence of an equilibrium solution to party competition in EP elections. Notwithstanding, even a casual inspection of voter preferences clearly reveals that density functions on either dimension of the European political space are unidimensional and peak close to the scale mean. While there is no option for the emergence of an iron-clad, sustainable game-theoretic equilibrium, we may nevertheless expect centrist parties to do well when the majority of centrist voters selects the ideologically and programmatically proximate party. Below the line, we may still expect the proximity model to facilitate good fortunes for centrist electoral platforms.

2.2. Alternative Models and the Fortunes of Extremists

Theoretical expectations regarding the superior performance of centrist parties or lists have regularly not been met. Recent general elections have often witnessed a substan-
tial degree of programmatic polarization, and in many cases the successful parties did not represent the center, but rather something like moderate extremists (Adams et al., 2005; Iversen, 1994). This applies even more to EP elections which, as indicated by the second-order election model, are often dominated by small, euroskeptic and ideologically extreme political parties or groups. In EP elections, rather moderate voters are apparently willing to cast a vote for parties which are not only considerable remote from their personal ideal points, but instead opt for political forces which stand for explicitly more extremist positions. In this vein, moderate voters often appear to prefer extreme parties (Kedar, 2005a,b, 2009).

In the remainder of this section, we review some prominent refinements of or alternatives to Downsian proximity voting which adequately account for the success of non-centrist actors: the discounting model and the directional model of voting. Voters that are driven by these logics of party evaluation and vote choice will not necessarily support parties which closely match their own ideological preferences and regularly may not even end up voting for themselves. Instead, they opt for parties that might be best suited to enact their desired policies or to bring about political change in the desired direction.

The Grofman Discounting Model

The discounting model continues to utilize an Euclidean political space. That said, the pure proximity and the discounting models attribute somewhat different credibility towards indicated party positions. As already observed by Downs (1957, 39), voters may not be well advised to take advertised party positions at face value. Instead, if a voter

is rational, he knows that no party will be able to do everything that it says it will do. Hence he cannot simply compare platforms; instead, he must estimate in his own mind what the parties would actually do were they in power.

Thus, the basic idea is that voters do not take positions adopted and advertised by political parties at face value, but consider whether alternative platforms are effectively able to deliver the policies they claim to stand for. This somewhat general idea has latter been spelled out more clearly and stated formally by Matthews (1979) and Grofman (1985). If a party, for instance, offers policy at 4 \((p_{ij} = 4)\), while the current neutral point is at 2 \((NP_a = 2)\), the voter may expect that a party is, due to the need to compromise, to form coalitions, and due to the presence of potential veto players, not able to shift
policy the full range of two scale points, but rather by less than this (cf. in more detail Merrill and Grofman, 1999):

\[U_i^g(j) = -||V - \beta^g P||^2 = - \sum_{a=1}^{n} \alpha_a \left[v_{i[a]} - (SQ_a + \beta^g (p_{i,j[a]} - SQ_a)) \right]^2 \text{ with } \beta^g \in [0, 1] \]

Adopting this notation, \(\beta^g \) is a discounting parameter which indicates how confident voters are that advertised policy positions will actually be watered down by political compromise, negotiations, and a multitude of veto players. If \(\beta^g = 1 \) the model reduces to classical Downsian proximity voting and political platforms are expected to fully implement their advertised policies; if \(\beta^g = 0 \), in contrast, the voters completely dispute a specific party’s capability and credibility to change the status quo. Any values between zero and one indicate that voters think that parties may implement their programmatic positions, but only to a certain extent.

The success of non-centrist actors in EP elections may thus be a result of the voters’ incentives to “overshoot the mark” (Enelow et al., 1993) in order to compensate for the insinuated inability of a political platform to fully implement its advertised policies or the watering-down of programmatic policy positions by complex systems of checks and balances. Grofman (1985) argues that voters are likely to discount policy positions, especially when there are multiple veto players and low levels of direct political responsiveness, since they believe that a party or a list might not be able to implement her stated policy position and will therefore move policy to some point between her stated ideal position and the current status quo.

Discounting models demand very sophisticated voters who are not only able to locate themselves and any viable party or list within the European political space. Furthermore, the voters must also be able to locate the current status quo of domestic and European politics and to evaluate whether specific parties or electoral coalitions will be able to deliver their advertised platforms. Given this rather demanding set of functional conditions, the discounting model may easily apply to voting behavior in EP elections.

Although the EU political system has seen a gradual evolution from a consensual to an at least partially majoritarian policy-making process, any act involves many political actors, as well as often complex negotiations between the intergovernmental (the Council) and the supranational (the Commission and the Parliament) actors. Due to this overproduction of institutional and partisan “veto players”, many EU policies are extremely watered-down deals which cannot be expected to induce a viable change in policy.

This assessment of European Union politics closely corresponds to what Grofman (1985) or Enelow et al. (1993) had in mind when they proposed the discounting model
of voting with voters’ incentives to “overshoot the mark” in order to get their desired policy implemented. In EP elections voters will try to compensate for complex bargaining procedures which might lead to a watering down of their sincere electoral preferences and prefer fringe parties that advertise more radical integrationist or, particularly, euroskeptic positions (Grofman, 1985; Kedar, 2005a,b; Merrill and Grofman, 1999). As a result, compensational voting should be especially salient in EP elections.

Hypothesis 1 The Discounting Model Applied to EP Elections

The hyper-consensus system of the European Union corroborates discounting. If this hypothesis can be empirically sustained we should find significant centrifugal incentives on both dimensions of the European political space since voters need to compensate for the watering down of the parties’ advertised policies on both the left-right and the European integration dimension.

The Rabinowitz-Macdonald Directional Model

Another explanation for the success of non-centrist actors has been proposed by the supporters of the directional theory of voting. This strand of theories assumes that voters do not cast their vote for the party that is most proximate to their programmatic or ideological point of view, but rather prefer those platforms that propose policy change in a direction favored by the voter. Directional voting models do not view political issues as fine-grained, metric policy positions, but rather as binary alternatives voters can either support or reject. In mathematical terms, directional voting does not take place in an Euclidean policy space, but adheres to an inner-product geometry.

While different models of directional voting have been suggested in the literature (starting with, for instance, Matthews, 1979), we focus our discussion on the potentially most common and established ones which have been suggested and vigorously defended in a series of articles by Rabinowitz and Macdonald (1989) and by Macdonald et al. (1991, 1998). The Rabinowitz-Macdonald directional model does not interpret any position within the European political space as associated with any substantive policy content, but as the direction and intensity with which voters \(V \) or parties \(P \) hold a position in a dichotomous issue space. The Rabinowitz-Macdonald model attributes the highest electoral utilities to the most extreme platforms, and the most extreme platform will, theoretically, receive the support of any voter who desires policy change in the proposed direction:

\[
U^d_i(j) = VP = \sum_{a=1}^{n} \alpha_a(v_i[a] - NP_a)(p_{i,j[a]} - NP_a)
\]
Setting the scale mean as the neutral point (NP\(_a = 0\)), this reduces to:

\[
U_i^d(j) = \sum_{a=1}^{n} \alpha_a v_{i[a]} p_{i[j[a]}
\]

This discussion clearly reveals that the Rabinowitz-Macdonald model is not about selecting a specific policy on an ideological or a programmatic scale, but about pushing for change of the status quo in the specific direction desired by the voter. Applied research which subscribes to the directional voting perspective has however commented little on the identification and measurement of that status quo. Individual contributions have either focused on the neutral point, the center of the scale, the position of the government, or the position of the median voter to capture the status quo (Kedar, 2005a,b).

Directional utilities increase without bound, when parties adopt more extreme ideological positions. To correct for this extremely unrealistic notion, Rabinowitz and Macdonald (1989) have constructed a “circle of acceptability” which penalizes political extremism and sorts out those platforms that are “too far out”. However, the authors do not provide any explicit definition of their region or circle of acceptability, and the concept is difficult to justify due to straightforward theoretical reasons. Rather, the theoretical definition of this region is often done in an arbitrary, \textit{ad hoc} manner. Some authors have tried to propose definitions of the “circle of acceptability” (cf. Iversen, 1994). Others have included more sophisticated measures for the status quo than simply NP\(_a = 0\) and utilized either the party system median or the positions of the incumbent parties as measures for the current political status quo. For convenience, we stick with a simpler model, since these choices have very little impact on the substantive and statistical findings presented in this paper.

While proximity and, even more, discounting models of voting presuppose sophisticated voters that possess a minimum degree of clarity over their personal preferences, the political platforms of major political parties, and the location of the current policy status quo, the directional model of voting does not assume a high degree of voter sophistication. Rabinowitz and Macdonald (1989) cogently linked the directional logic to symbolic politics, where voters do not tend to be well informed, yet nevertheless hold very strong opinions pro or contra a specific policy. This pattern closely corresponds to most voters’ perspective on European Union politics. Public opinion research has shown that most voters are ill-informed about the EU and about European Union politics, but nevertheless frequently attach a strong symbolic meaning to the benefits and drawbacks of EU membership. The strong performance of ideologically extremist or euroskeptic fringe parties in EP elections might be the result of the directional logic of
party evaluation and voting. Directional voting should thus be a very salient mechanism governing voting behavior and party competition in EP elections.

Hypothesis 2 The Directional Model Applied to EP Elections

A second explanation for centrifugal outcomes addresses the nature and the specific substance of EP elections. The symbolic nature of European Union politics reinforces the directional logic only on the European integration scale.

2.3. Unified Models

More complex models that generalize and unify these “building blocks” of proximity, discounting, and directional voting have been discussed by a number of authors (cf., among others, Adams et al., 2005; Iversen, 1994; Lewis and King, 1999; Merrill and Grofman, 1999). Voting behavior might not be exclusively determined by one of the pure models, but rather that either voters may combine the ideas of proximity and directional voting in their decision-making process or voters may use spatial proximity to evaluate some parties (e.g. incumbents) and rely on the directional logic to evaluate others (e.g. opposition parties).

Unified models, however, come with a number of complications. While it has been argued that proximity models on the one and compensational or directional models on the other hand merely provide the endpoints of a continuum, these often blend entirely different ideas of political competition and rest on entirely different concepts of the political space. For instance, some models operate in an euclidean space (proximity and compensational voting) and other models operate in an inner-product space (directional voting). Although these logics are different, empirical utility terms often overlap and are not easily discriminable in empirical analyses. It has been demonstrated that specifications of the compensational and directional models can even algebraically converted into each other potentially creating perfect collinearity in spite of very different theoretical assumptions. These collinearity issues prevent us from simultaneously including compensational and directional into our utility specification.

In the unified spatial model the balance between the proximity and directional utility terms is indicated by the mixing parameter b_{mix}. If $b_{\text{mix}} = 1$, the voters exclusively follow the Downsian proximity model, if $b_{\text{mix}} = 0$ the directional model applies. We also include additional terms α which capture the salience of any dimension a for the derivation of the utility function and for vote choice. In addition, we again set $N'_{P_a} = 0$
to further simplify the model:

\[U_i(j) = 2(1 - \beta) U^d - \beta U^p = \sum_{\alpha=1}^{n} \alpha \left[2(1 - \beta) v_i[a]^2 p_i, j[a] - \beta (v_i[a] - p_i, j[a])^2 \right] \]

The label “unified models” has also been exclusively reserved for specifications which unify various spatial voting models. Beyond the core of spatial modelling, scholars have also suggested models which unify spatial and non-spatial considerations into a single utility function. This provides an option to simultaneously consider a broad variety of additional explanatory variables. For instance, party utilities are also affected by personal qualities of the party personnel that stand for them, the incumbents’ utilities are also shaped by the state of economic development, and vote choice may be significantly affected, as claimed by the Michigan school, by long-standing party identification or loyalty. Voting behaviour in EP elections may also be affected by an individual’s satisfaction with the operation of democracy at the national or European levels, personal or sociotropic evaluations of the benefits and drawbacks of EU membership etc.

The contributions of the Michigan School maintain that party identification relates to affective bindings. While the concept of party identification has significantly influenced theoretical reasoning and applied electoral research, its specific theoretical contents, its impact on actual voting behavior, and its applicability as an independent variable in positive models of spatial voting has been questioned. Critics emphasized and elaborated on the cognitive dimension of the presumed partisanship. This concept is, for instance, embodied by Fiorina’s (1981) conceptualization of party identification as a permanently updated “running tally” that summarizes past experiences from early socialization to current evaluations of partisan records of policy performance: First, the redefinition of party identification by Fiorina (1981) introduces theoretical complications into the models, since party identification is affected by general ideological orientations, while ideology, in turn, is affected by party identification. Both influences are causally interrelated and cannot be disentangled easily. Secondly, the concept of party identification is also problematic in terms of formal and statistical modelling, since the respective indicators will be correlated with policy and non-policy predictors of actual voting behavior and thus introduce an endogeneity problem to unified models of issue voting and party competition (cf. the discussion in Adams et al., 2005, 247-253).

Whenever these non-policy effects are not explicitly modeled they need to be captured by alternative-specific intercepts, and, in turn, the omission of these constants introduces bias to any estimate of the modeled parameters (cf. Merrill and Grofman,
2.4. The Statistical Model of Vote Choice

We now derive and introduce a statistical model that corresponds with our theoretical model. We utilize a two-dimensional unified spatial model with non-spatial covariates to specify the utility each voter \(i \) attaches to all the party alternatives \(j \).

\[
U_i(j) = \sum_{a=1}^{2} \alpha_a \left[2(1 - \beta_{a}^{\text{mix}})v_{i[a]}p_{i,j[a]} - \beta_{a}^{\text{mix}}(v_{i[a]} - p_{i,j[a]})^2 \right] + \gamma t_i + c_j
\]

The parameter vectors \(\alpha \), \(\beta \), and \(\gamma \) are estimated from the data by maximum likelihood. \(\alpha_1 \) and \(\alpha_2 \) indicate the salience parameters for the two dimensions that define the European political space. \(\beta_{1}^{\text{mix}} \) and \(\beta_{2}^{\text{mix}} \) indicate the balancing of the proximity and directional sub-models. \(\beta_{1}^{\text{mix}} = 0 \) identifies a pure directional model, and \(\beta_{1}^{\text{mix}} = 1 \) signifies a straightforward proximity model. Ultimately, \(\gamma \) indicates the impact of non-policy variables on vote choice, for instance satisfaction with democracy, assessments of EU membership or economic developments, or party identification.

Our conceptual decision to opt for stated electoral choice rather than the propensity to vote as a dependent variable comes with significant costs in terms of the empirical evaluation of causal hypotheses and the presentation of our main findings. In the alternative-specific layout of the data matrix, the multinomial variable electoral choice is rearranged as a series of \(I \) individuals facing \(J \) choice options, and the vote for a specific party is indicated by the binary variable \(v_{i,j} \) which indicates whether the respondent \(i \) voted for party \(j \) or not (0= voter \(i \) did not cast a vote for party \(j \); 1= voter \(i \) cast a vote for party \(j \)). As indicated, the dataset is therefore expanded from \(I \) respondents to \(I \cdot J \) choice alternatives in, still, \(K \) countries. This is sometimes called a “stacked” dataset (cf. van der Brug et al., 2007; van der Eijk et al., 2006).

Voting decisions involve discrete choices between a number of party alternatives and are conditioned by alternative-specific variables such as idiosyncratic properties of the alternatives like spatial utilities, identification, or government status and individual-specific data such as e.g. properties of the voter which are constant across these alternatives like political preferences, occupation, social class, or political sophistication. At the micro-level, these structures of grouped dichotomous data may be evaluated via conditional logit which, based on the respective utility functions, jointly start from specifying
the probability that voter i prefers party j: $P[v_i = j] = \frac{U_{i,j}}{\sum_{j=1}^{J} U_{i,j}}$

Note that in this model the error terms $\epsilon_{i,j}$ are drawn from a Gumbel or type I extreme value distribution.

3. Theories of Party Competition in EP Elections

Party strategies may cover a broad scope of potential motives. Parties may be seeking votes, offices, or policies, and often they need to address all of these dimensions to bring about political change or to “make a difference”. On the one hand, we assume that parties anticipate voter behavior so as to maximize their political portfolios. On the other hand, shifting spatial party positions so as to attract additional political support does not come without costs. Instead, “responsible” parties are required to present coherent and comparatively stable issue positions which systematically correspond with their overall ideological and programmatic orientations (cf., above all, Hinich and Munger, 1997).

3.1. Spatial Models and Party Locations

Linking models of vote choice and party strategies is a crucial task for this paper (cf. Adams, 2001; Adams et al., 2005; Merrill and Grofman, 1999). In the classical Downsian model of political competition, parties are opportunistic issue entrepreneurs and position themselves where they locate (a majority of) the potential electorate. Proximity models usually motivate parties to present centrist, convergent, and rather similar electoral platforms to their voters. Incentives to present increasingly non-centrist platforms may be introduced by spatial (discounting and directional voting) and by non-spatial determinants of vote choice (e.g. party identification and economic voting).

When voters exclusively evaluate parties or lists by spatial proximity, all vote-seeking parties regularly face incentives to advertise centrist policy platforms which are supported by the majority of voters and thus to converge towards the position of the median voter. When voters increasingly consider more complex spatial utility functions and try to factor in checks and balances (the discounting model) or strive for policy change (the directional model), opportunist parties or lists, as defined by Downs (1957) face incentives to hover away from the political center and present more extremist pol-
icy positions.

As we have demonstrated before, the symbolic politics of European integration and the complexity of decision-making and the widespread institutional stalemate within the European Union may easily motivate voters to pick parties or lists which are more extreme than their personal preferences. Following the Downsian concept of party competition, vote-seeking parties face incentives to factor in centrifugal tendencies affecting party evaluation and vote choice and to present less centrist and more extreme policy platforms to follow and persuade voters that decide according to the discounting or the directional model of vote choice. Certainly, there are practical limits to these opportunistic strategies of vote-seeking, but we posit that these limits are weaker in EP than in national elections, because EP elections are of significantly lower salience and EP elections do not contribute to the selection of the executive so that party strategists do not need to consider the subsequent dynamics of coalition building.

Hypothesis 3 Spatial Determinants of Centrifugal Party Competition
Political parties face incentives to hover away from the political center and to gravitate towards (moderately) extremist positions whenever voters try to compensate institutional inefficiency and/or stalemate (the discounting model) or because they perceive a specific issue dimension as structured by strictly bipolar alternatives (the directional model).

3.2. Non-Spatial Determinants of Party Locations
While parties are generally expected to converge towards the median voter in pure proximity models, party leaders also have incentives to hover away from the political center and move towards positions occupied by specific subgroups of the electorate which lean towards them for non-spatial reasons. Party strategies may therefore either focus on the median voter or, alternatively, on the median of the respective party supporters with the second strategy becoming more and more dominant when the significance of non-policy factors, most importantly of party identification, increases. As stressed by Adams et al. (2005), these causal mechanisms are not only a core component of party strategy, but also explain party incentives to congruently represent their respective constituencies. Spatial competition and strategic position-taking, therefore, reinforce one of the basic arguments provided by supporters of the responsible party model of political representation.

We posit that the inclusion of non-spatial utilities accounts for the diversity of empirical party positions. Due to the notoriously low turnout in EP elections, party strategists cease to appeal to the political center, where a majority of potential voters is positioned, but rather direct their appeals towards “their” likely voters so as to encourage those
who lean towards them for non-policy reasons to show up at the polls. The threat of abstention therefore forces political parties to offer more extreme platforms at their specific constituencies’ ideal points rather than to present centrist policies at the position of the median voter.

Hypothesis 4 Non-Spatial Determinants of Centrifugal Party Competition

Political parties face incentives to hover away from the political center, i.e. the location of the median voter, whenever vote choice is significantly affected by non-spatial considerations such as party identification or economic voting and these motives are correlated with spatial party positions.

3.3. Reacting to the Threat of Abstention

Classical spatial voting models simply tend to presume full turnout. However, Adams et al. (2005) have shown that vote abstention, either due to alienation from or indifference towards the parties or lists competing in an election may motivate parties to move away from the center in order to mobilize “their” specific constituencies which lean towards them for non-spatial reasons.

Clearly, the “threat of abstention” (Adams et al., 2005, 117) is present in EP elections. While European affairs are generally considered less salient by significant parts of the electorate, the rank and file, and the media, vote abstention may also be motivated by alienation from spatial positions offered by (mainstream) political parties. Political parties and their personnel are generally much more integrationist than their increasingly euroskeptic electoral constituencies.

Hypothesis 5 Turnout and Centrifugal Competition

When voters abstain due to alienation or indifference, political parties face incentives to hover away from the median voter position and appeal to their respective electoral constituencies. Given that the comparatively low salience of European Union politics implies a significantly lower turnout in EP elections, these incentives are reinforced in EP elections and explain patterns of centrifugal party competition.

3.4. The Analytical Model of Party Strategy

Other than the model of vote choice, the model of party strategy is an analytical, not a statistical model. This implies that all parameters need to be derived externally and are then fed into the procedure for the computation of party locations. So as to derive optimal party positions and Nash equilibria in spatial party competition, we pick up the results of the vote choice models. To simplify the presentation of the procedure,
we demonstrate the computation of Nash equilibria for an analytically isolated single dimension, although our latter analysis focusses on the two-dimensional European political space. Recall that conditional logit models, as described above, aim at estimating the probability that voter i picks party j given the model parameters $\alpha_a, \beta_a, \text{and } \gamma$ and its actual spatial policy positions p_j:

$$P [v_i = j|\alpha_a, \beta_a, \gamma, p_j] = \frac{U_{i,j}}{\sum_{j=1}^{J} U_{i,j}}$$

Adams et al. (2005) have demonstrated that this random utility specification may be used so as to search for Nash equilibria of optimal party locations p_j^*. The expected vote share of party or list j (EV$_j$) is given by the sum of the individual probabilities by each voter i:

$$\text{EV}_j(\alpha, \beta, \gamma, p_j^*) = \sum_{i=1}^{n} P [v_i = j|\alpha_a, \beta_a, \gamma, p_j]$$

In a Nash equilibrium, no individual party can increase its vote share by unilaterally changing strategy, i.e. by re-locating within the given policy space. This implies that the partial derivative of EV_j with respect to its position in the policy space p_j^* needs to be zero for all j:

$$\frac{\partial}{\partial p_j^*} \text{EV}_j(\alpha_a, \beta_a, \gamma, p_j^*) = 0$$

Finally, we solve this equation for p_j^* in order to obtain the spatial location where party j maximizes its electoral support:

$$p_j^* = \frac{\sum_{i=1}^{n} P [v_i = j|\alpha_a, \beta_a, \gamma, p_j^*] (1 - P [v_i = j|\alpha_a, \beta_a, \gamma, p_j^*]) x_i}{\sum_{i=1}^{n} P [v_i = j|\alpha_a, \beta_a, \gamma, p_j^*] (1 - P [v_i = j|\alpha_a, \beta_a, \gamma, p_j^*])}$$

Adams et al. (2005) suggest an iterative algorithm for the search of spatial party positions which maximize the expected vote share. This procedure updates the spatial location of each party considering location changes by any other party while holding the model parameters $\alpha, \beta,$ and γ constant. Note that the analytical model of party ideal points does not include or require any information regarding the actual vote choice of a respondent.
4. Data and Measurement

Mass-level elections studies are the primary data source of information regarding individual voter’s ideological preferences and the perceived policy positions of political parties. From the first direct EP elections in 1979 to the most recent ones in 2009, a series of altogether five independent election studies have been organized and conducted in each member state of the European Union, under the label of the “European Election Studies” (EES; http://europeanelectionstudies.net). For our two-step analysis of vote choice and party competition, we turn to the most recent wave of the EES which aimed at “Providing an Infrastructure for Research on Electoral Democracy in the European Union” (PIREDEU; http://www.piredeu.eu). While the PIREDEU study comprises of several different modules, we exclusively focus on the voter survey which comprises of representative samples of enfranchised citizens in all 27 member states of the EU (N ~ 1000). Note that the empirical fieldwork has been conducted immediately after the European elections of June 2009.

We believe that electoral research should model vote choice rather than any feeling thermometer scores or propensity to support certain parties or lists. Therefore, we focus on stated vote choice in the EP elections as our principal dependent variable. The PIREDEU dataset provides detailed empirical evidence on recalled vote choice in the EP elections, in the most recent national and in hypothetical, concurrent contests to parliamentary seats. Throughout the paper, \(v_{ik} \) denotes the vote choice of respondent \(i \) in country \(k \) in the 2009 elections to the European Parliament. Turning to the determinants of vote choice, our principal independent variables are defined by the different perspectives on spatial policy utilities as indicated by the proximity, compensational, and directional perspectives. The PIREDEU study provides sufficient empirical information so as to compute the various alternative-specific utility terms discussed above: Each respondent is inquired about her self-placements on the left-right and the European integration scales on an eleven-point scale ranging from zero to ten, and the interviewees also queried to place each party \(j \) competing in each country \(k \) on similar scales. These individual- and alternative-specific placements are utilized to compute proximity and RM directional utilities on both dimensions that span the European political space.

The EES also contain a battery of non-spatial variables which may be included in our unified models. The voters are asked to indicate whether they are “close” to a specific political party yielding a measure of party identification. Additional items capture the satisfaction with democracy at the national and at the European Union level and also cover more general evaluations regarding the benefits and drawbacks of EU membership.
The PIREDEU dataset originally covers 27,069 interviewees from the 27 member states of the European Union. Our empirical analysis focuses on a subset, because only about 55 percent (N=14,913) of the respondents indicate a valid vote decision in the EP elections. To facilitate statistical modeling of vote choice, we also had to exclude voters that picked minor parties (defined by having less than ten supporters) and voters which did not indicate their individual-specific locations on the left-right and the European integration dimension. This subset of the PIREDEU data is transformed into an alternative-specific layout in order to allow for the statistical modeling of vote choice. The number of individuals is thus multiplied by the context-specific number of alternatives (= electoral lists or political parties) in the choice set of each individual respondent yielding an integrated dataset that contains complete data on almost 70,000 party alternatives and 11,311 individuals.

5. Empirics of Vote Choice

After the discussion of our theoretical and statistical models and hypotheses and a discussion of the data at hand, we now present the our empirical findings regarding the models of vote choice. In the first step, we present some evidence regarding the statistical significance and substantive implications of unified models. Secondly, we present our empirical findings on the salience of the left-right and the European integration dimension. Thirdly, the discussion of mixing parameters sheds some light on the balancing of centrifugal and centripetal forces in EP elections.

We begin our presentation of empirical findings with some evidence on the significance of unified models. Table 1 presents log. likelihoods for various spatial models of vote choice which differ in their degree of complexity. The first column indicates log. likelihoods for (1) empty models which only consider alternative-specific constants to capture any unmodelled and valence effects. The second and third columns add utility terms for (2) the classical Downsian proximity model and the RM directional model. Both specifications are integrated by the unified spatial model of vote choice. The addition of individual-specific evaluations of democratic quality at the national and European level eventually yields (5) the unified model with non-spatial covariates. Note that the basic proximity and directional models include the empty model as a special case (with $\alpha = 0$). In turn, the unified spatial model includes the basic models as special cases (with $\beta = 0$ or $\beta = 1$, respectively), and, ultimately, the unified model with non-spatial covariates, of course, includes the unified spatial model as a special case (with $\gamma = 0$). The difference of two individual log. likelihoods is distributed according
to a χ^2 distribution with a single degree of freedom and therefore is statistically significant when it amounts to at least 1.92 (0.05% level) oder 3.32 (0.01% level) (cf. Merrill and Grofman, 1999, 88).

Considering these criteria, we find that any model including any kind of spatial utility term has a significantly higher log likelihood than the respective empty models. This clearly demonstrates the explanatory value of spatial models, either founded on the proximity or on the RM directional perspective, in the European political space. Turning to unified spatial models, a comparison of the log likelihoods demonstrates that log likelihoods of any of the sub-models (i.e. proximity and directional voting) is significantly smaller than the likelihood of the unified model in most of the 27 member states of the European Union. However, in France, Ireland, Lithuania, the Netherlands, Poland, and Slovakia the unified model does not perform significantly better than its directional subcomponent. Turning to the non-policy utilities, we find that unified models with non-spatial covariates provide a significantly better account of empirical voter behaviour in 26 of the country segments which comprise the EP elections; only in Hungary the inclusion of non-policy predictors did not add any “explanatory value”.

These findings provide ample evidence to support the application of unified models. Therefore, we exclusively focus on unified models with non-policy covariates when we present our empirical results regarding the salience of both dimensions that constitute the European political space and regarding the balancing of proximity and directional utility components. Proceeding with salience, Figure 1 illustrates the impact of the left-right (left-hand panel; as indicated by a_1) and the European integration dimension (right-hand panel; as indicated by a_2). Spatial proximity or directional match on the left-right dimension are statistically significant and substantively meaningful predictors of vote choice in most of the country segments. This is clearly visible for the Finish, Hungarian, Portuguese, or Swedish segments. In contrast, the impact of left-right considerations on vote choice is statistically significant, but substantively not very meaningful in Belgium, Ireland, Lithuania, Romania, and Slovenia (cf. a_1 in Figure 1).

The empirical picture is much more ambiguous for the second dimension of the policy space, the European integration dimension. Spatial utility terms (covering both proximity and directional considerations) appear to be valid predictors of vote choice only in some member states. This particularly applies to some scandinavian countries with a long-standing history of criticizing the European Union, namely Denmark, Finland, and Sweden. In contrast, the impact of “Europe” in EP elections appears to be insignificant and substantively meaningless in a group of additional countries. Spatial utilities on the European integration dimension do not impact on vote choice in the Czech Republic, France, Great Britain, Latvia, Lithuania, Luxembourg, Malta, Portugal,
Table 1: Log. Likelihoods for Nested Spatial Models

<table>
<thead>
<tr>
<th></th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT</td>
<td>-884.01</td>
<td>-778.80</td>
<td>-773.42</td>
<td>-766.38</td>
<td>-748.82</td>
</tr>
<tr>
<td>BEL</td>
<td>-558.62</td>
<td>-535.42</td>
<td>-515.01</td>
<td>-510.04</td>
<td>-496.73</td>
</tr>
<tr>
<td>BGR</td>
<td>-412.71</td>
<td>-323.47</td>
<td>-310.78</td>
<td>-306.64</td>
<td>-298.98</td>
</tr>
<tr>
<td>CYP</td>
<td>-882.28</td>
<td>-632.55</td>
<td>-619.52</td>
<td>-614.03</td>
<td>-604.27</td>
</tr>
<tr>
<td>CZE</td>
<td>-453.67</td>
<td>-329.53</td>
<td>-322.10</td>
<td>-319.12</td>
<td>-314.71</td>
</tr>
<tr>
<td>DEU</td>
<td>-727.96</td>
<td>-625.65</td>
<td>-611.82</td>
<td>-607.84</td>
<td>-600.33</td>
</tr>
<tr>
<td>DNK</td>
<td>-843.90</td>
<td>-696.29</td>
<td>-695.38</td>
<td>-679.66</td>
<td>-662.60</td>
</tr>
<tr>
<td>ESP</td>
<td>-382.69</td>
<td>-258.25</td>
<td>-260.54</td>
<td>-250.14</td>
<td>-239.76</td>
</tr>
<tr>
<td>EST</td>
<td>-380.65</td>
<td>-327.97</td>
<td>-306.40</td>
<td>-304.13</td>
<td>-289.17</td>
</tr>
<tr>
<td>FIN</td>
<td>-1051.55</td>
<td>-832.53</td>
<td>-812.43</td>
<td>-795.00</td>
<td>-776.82</td>
</tr>
<tr>
<td>FRA</td>
<td>-454.73</td>
<td>-369.02</td>
<td>-359.84</td>
<td>-358.57</td>
<td>-340.55</td>
</tr>
<tr>
<td>GBR</td>
<td>-693.50</td>
<td>-642.78</td>
<td>-635.09</td>
<td>-631.32</td>
<td>-608.34</td>
</tr>
<tr>
<td>GRC</td>
<td>-862.57</td>
<td>-687.88</td>
<td>-697.58</td>
<td>-681.19</td>
<td>-666.45</td>
</tr>
<tr>
<td>HUN</td>
<td>-343.26</td>
<td>-201.89</td>
<td>-207.73</td>
<td>-194.96</td>
<td>-193.31</td>
</tr>
<tr>
<td>IRL</td>
<td>-797.97</td>
<td>-761.75</td>
<td>-749.17</td>
<td>-748.52</td>
<td>-727.76</td>
</tr>
<tr>
<td>ITA</td>
<td>-642.20</td>
<td>-461.62</td>
<td>-451.84</td>
<td>-447.01</td>
<td>-429.59</td>
</tr>
<tr>
<td>LUX</td>
<td>-859.41</td>
<td>-804.80</td>
<td>-775.55</td>
<td>-766.70</td>
<td>-752.55</td>
</tr>
<tr>
<td>LVA</td>
<td>-782.61</td>
<td>-707.31</td>
<td>-699.84</td>
<td>-695.49</td>
<td>-685.17</td>
</tr>
<tr>
<td>MLT</td>
<td>-173.21</td>
<td>-99.14</td>
<td>-93.57</td>
<td>-90.30</td>
<td>-77.49</td>
</tr>
<tr>
<td>NLD</td>
<td>-1187.81</td>
<td>-1044.09</td>
<td>-990.76</td>
<td>-989.22</td>
<td>-968.82</td>
</tr>
<tr>
<td>POL</td>
<td>-394.97</td>
<td>-309.34</td>
<td>-266.79</td>
<td>-265.05</td>
<td>-261.74</td>
</tr>
<tr>
<td>PRT</td>
<td>-535.82</td>
<td>-404.00</td>
<td>-407.56</td>
<td>-392.21</td>
<td>-381.19</td>
</tr>
<tr>
<td>ROU</td>
<td>-342.58</td>
<td>-299.64</td>
<td>-264.27</td>
<td>-236.04</td>
<td>-233.42</td>
</tr>
<tr>
<td>SVN</td>
<td>-817.83</td>
<td>-711.94</td>
<td>-682.55</td>
<td>-678.39</td>
<td>-669.50</td>
</tr>
<tr>
<td>SWE</td>
<td>-1096.15</td>
<td>-852.23</td>
<td>-829.14</td>
<td>-823.04</td>
<td>-815.94</td>
</tr>
</tbody>
</table>

Notes:

1. An empty model:
 \[U_i(j) = c_{ij} \]

2. A two-dimensional proximity model:
 \[U_i(j) = \sum_{a=1}^{2} -\alpha_a (v_{i[a]} - p_{i[a,j]})^2 + c_{ij} \]

3. A two-dimensional directional model:
 \[U_i(j) = \sum_{a=1}^{2} \alpha_a v_{i[a]} p_{i[j,a]} + c_{i} \]

4. A unified spatial model:
 \[U_i(j) = \sum_{a=1}^{2} \alpha_a \left[2(1 - \beta_a^{\text{mix}}) v_{i[a]} p_{i[j,a]} - \beta_a^{\text{mix}} (v_{i[a]} - p_{i[j,a]})^2 \right] + c_{ij} \]

5. A unified model with non-spatial covariates:
 \[U_i(j) = \sum_{a=1}^{2} \alpha_a \left[2(1 - \beta_a^{\text{mix}}) v_{i[a]} p_{i[j,a]} - \beta_a^{\text{mix}} (v_{i[a]} - p_{i[j,a]})^2 \right] + \gamma t_i + c_{ij} \]
Figure 1: Salience Parameters α_1 and α_2

Notes: Salience parameters of the left-right (left-hand panel) and the European integration dimension (right-hand panel) taken from a unified model with non-policy covariates. The models have been separately estimated for any of the 27 member states. The three-digit ISO country codes identify the point estimators; the dashed lines identify the 95% confidence intervals. The measures of uncertainty have been computed by a non-parametric bootstrap. Appendix B provides a tabular summary.

Comparing α_1 and α_2, we find that both dimensions of the European political space are loosely associated. The salience parameters of both dimensions that span the European political space clearly tend to correlate, and high values for the left-right dimension (α_1) tend to be correlated with high values for the European integration dimension (α_2). Taken together, both dimensions therefore indicate whether the spatial theory of voting adequately captures electoral behaviour in the individual member states of the European Union. The comparison of α_1 and α_2 also demonstrate that the empirical salience of the encompassing left-right dimension by far outweighs aspects of European integration in any country segment ($\alpha_1 \gg \alpha_2$). However, this should be read with cau-
tion since one cannot simply equate left-right with domestic politics and the integration dimension with European Union politics. In the European multilevel system, political processes are increasingly structured by the ideological and programmatic dynamics of left and right on both dimensions of the policy space.

While the salience parameters α_a indicate the impact of the respective policy dimension on vote choice, the mixing parameters β_{a}^{mix} signify the balancing of centripetal and centrifugal incentives, of proximity and directional considerations. Recall that departing from previous contributions (for instance Adams et al., 2005; Hinich et al., 2004), we specify separate mixing parameters for each of the two dimensions which define the European political space. Figure 2 provides a comparison of the empirical estimates. On the left-hand panel, we present estimated β_{1}^{mix} for the left-right dimension; on the right-hand panel, we present estimated β_{2}^{mix} for the European integration dimension. We have performed a logistic parameterization of β_{1}^{mix} and β_{2}^{mix} to ensure that both are bound to the unit interval.

While Table 1 illustrates that unified models generally provide a better explanatory performance than their individual subcomponents, our empirical findings regarding the balancing of proximity and directional concerns are mixed. On the left-right dimension, we were able to estimate mixing parameters β_{1}^{mix} with sufficient levels of precision. While voters generally relied on both the proximity and directional dimension when they cast their votes in the 2009 EP elections, in most of the countries the explanatory value of the proximity component was somewhat higher ($\beta_{1}^{\text{mix}} > 0.5$). Only in a few country segments, namely in Belgium, Ireland, Malta, Romania, and Slovenia, the balancing of both utilities slightly leaned to the directional model ($\beta_{1}^{\text{mix}} < 0.5$).

On the significantly less salient European integration dimension the mixing parameters β_{2}^{mix} were estimated with significantly lower levels of precision. In the first group of countries, European integration therefore either was not salient at all for vote choice in EP elections, or both dimensions of competition overlapped. When the salience estimates α_2 indicate that the European integration dimension is not significant regarding both the proximity and the directional logic, the mixing parameter β_{2}^{mix} certainly does not warrant any meaningful interpretation. This applies to ten of the 27 member states, i.e. to the British, Czech, French, Italian, Latvian, Lithuanian, Luxembourgian, Maltese, Portuguese, and Spanish segments of the PIREDEU study. The second group of countries is characterized by the dominance of proximity over directional voting. This happens to be true only in a minority of the segments comprising the 2009 EP elections, in Finland, Greece, Ireland, and Sweden ($\beta_{2}^{\text{mix}} > 0.5$). In contrast, most of the countries lean at least somewhat towards the dominance of the directional logic when voters evaluate party positions on European integration. This can be shown for
In these countries, the European integration dimension was not significant
lengthy political negotiations may water down the initially advertised policy positions, this should apply to all dimensions of the European political space. Probing a bit deeper, we have also demonstrated that the centrifugal tendencies are somewhat stronger regarding European integration also providing some evidence for the effectiveness of symbolic politics and, related, directional voting. However, a crucial caveat applies, because the estimates for the European dimension usually not very precise and in some country segments unidentified. Below the line, these estimates provide considerable evidence for the significance of unified models of vote choice. We posit that the presence of centrifugal incentives, be it either according to the discounting or according to the directional logic, will be anticipated by political parties and will be reflected in more extreme policy positions presented to the electorate.

6. Empirics of Party Competition

Having shed some lights on the motives of voters in EP elections, we now present the our empirical findings regarding the models of party competition. Our basic idea is that voters anticipate and react to the decision-making rules adopted by political parties in order to maximize their expected vote share. Therefore, we now present some party positions in analytically derived Nash equilibria. Since, in contrast to a statistical model, any necessary parameters needs to be fed into an analytical model, the algorithms used for the computation of optimal party locations strictly build on the previously presented models. We have therefore used the salience and mixing parameters derived from the 27 conditional logit models that have been run for each country segment of the 2009 PIREDEU dataset so as to derive optimal party placements. For these purposes, we have adopted and revised the iterative algorithm derived by Adams et al. (2005). The analytical and iterative derivation of optimal party locations and Nash equilibria in spatial competition are, however, complex and cumbersome procedures. This is especially true when multidimensional competition, as provided by the two-dimensional European political space, do not facilitate the generation of unique equilibria, but yield unstable solutions. For pragmatic reasons, we have therefore decided treat both dimensions that span the European political space as separable and to compute unique party equilibria separately for each of the two dimensions of political contestation.

Generally, we may feed any spatial model of vote choice into the iterative procedure for the identification of party competition equilibria: (1) The utilization of pure proximity models usually makes little sense, because these models which are blind for any predictors apart from the spatial party position, usually group all parties into a sin-
Notes: The four subpanels compare equilibrium party positions generated by proximity variables with covariates and unified proximity and directional models with mean party placements by all survey respondents; equilibrium and actual party positions are connected by a Loess smoother. The subpanels cover both the left-right and the European integration dimension. Altogether, we present valid inferences for $N = 153$ political parties or electoral lists from the 27 contemporary member states of the European Union.

Figure 3 provides a first overview of our principal findings. Note that the voters in almost any member state hold grosso modo centrist and single-peaked preferences; they
were also able to identify the divergent positions taken by political parties along each dimension. The figure compares our iteratively derived equilibrium party locations with actual party positions that are proxied by the mean placements of each political party by all survey respondents in a given country. The four subpanels compare equilibrium placements for the left-right (the two left-hand panels) and the European integration dimension (the two right-hand panels); the subpanels cover party positions derived from proximity models with non-policy controls (the two upper panels) and unified proximity and directional models with non-policy controls (the two lower panels).

Generally, the equilibrium positions correlate closely with average party placements. The empirical fit on the salient left-right dimension is certainly far better than the match of analytical with actual positions on the European integration dimension. In addition, unified models that also consider the centrifugal component provide far more accurate predictions of the “true” positions than proximity models with covariate on both dimensions of the European political space. In descriptive bivariate analyses, equilibrium party locations predicted by unified proximity and directional models with non-policy covariates correlate very strongly on the left-right dimension \((R^2 = 0.61)\), while the association is considerably weaker on the European integration dimension \((R^2 = 0.21)\). These findings can also been easily demonstrated by visual inspections of Figure 3 and, in more detail, by an inspection of the country-specific plots printed in Appendix C.

That said, the estimates also reveal some peculiarities that have been diagnosed in previous applications. In line with previous studies, and running counter some of our principal hypotheses, equilibrium placements are significantly less dispersed than “actual” party positions as assessed by the mean values of idiosyncratic party placements. This applies to both the left-right and the European integration dimension, and the variation of placements based on the unified models is only somewhat higher than the variation predicted by proximity models with non-spatial covariates, but still falls short of the variation of mean party placements. The low(er) variation of equilibrium party placements effectively echoes results derived by a number of previous analyses (cf. Adams et al., 2005; Meyer and Müller, 2012; Schofield et al., 1998). These studies concordantly found that some or all of their models predicted party equilibria which fell significantly short of real-world dispersion levels of party positions in the respective countries. The authors agreed that their models did a good job predicting the equilibrium placements of large centrist parties and speculated that the strategies of smaller, more extreme parties could not be meaningfully explained, because these actors potentially pursued other goals than the maximization of their vote portfolios. While this may be true or not, the authors do not provide any other argument why some parties put forward programmatic platform which are too far out to contribute to the maxi-
mization of their vote shares.

Ultimately, we explore the linkage of the mixing parameters \(\beta_1^{\text{mix}}\) and \(\beta_2^{\text{mix}}\) which have been estimated by the conditional logit models of vote choice with the dispersion of political parties along the policy space. The more a dimension leans towards centrifugal incentives (i.e. discounting and/or directional voting) and, therefore, the lower the values of \(\beta_1^{\text{mix}}\) and \(\beta_2^{\text{mix}}\), the farther should political parties hover away from the political center. Grosso modo our empirical analyses confirm this specific of our vote choice and party competition models. On average, higher lower of the mixing parameters, which refer to the predominance of discounting or directional models, are associated with higher levels of ideological dispersion among the party alternatives.

7. Conclusion

Spatial models of political competition feature a novel perspective on elections to the European Parliament and a conceptual and methodological revision of the, by now established, second-order election model that provides a causally valid account of the underlying micro-logic to the robust empirical evidence at the aggregate level. The application of unified spatial voting models has provided and corroborated a number of empirical insights into the motives of party evaluation and voting behavior in EP elections and the balancing of “genuinely” domestic and “genuinely” political issues. We conclude by summarizing two principal empirical findings and by adding some conceptual caveats that identify promising avenues for further research.

Concerning the determinants of vote choice, we have shown that both dimensions that define the European political space contribute to party evaluation and vote choice in most member states. In any member state, left-right is by far more salient than European integration, and in some member states the European dimension is even inconsequential for vote choice and, in turn, for party competition. We found that unified models which integrate proximity and directional utilities tend have significantly higher likelihoods than the individual subcomponents. We actually found strong evidence for centrifugal tendencies on both dimensions of the European political space supporting the discounting argument. Some more detailed comparisons however revealed that the encompassing left-right dimension leans somewhat towards the proximity, and the European integration dimension rather leans towards the directional perspective also providing evidence for the directional logic of party evaluation and vote choice.

The determinants of vote choice also define the dynamics of party competition and the (potential) emergence of Nash equilibria which define “optimal” party strategy. The
second step of the analysis also provides compelling evidence for the verisimilitude of unified proximity and directional models. Predicted equilibrium party locations match with actual party locations as defined by the mean placements of the survey respondents, but the fit is considerably better for the unified than for the proximity specifications. In line with previous research, but somewhat counter to our hypotheses, we found that the party positions in strategic equilibria, even those which are based on the unified models, appear to be far less dispersed than our measures of actual party positions. The optimal locations taken by vote-maximizing political parties clearly do not exhaust the available room to manoeuvre. If these findings appear to be robust, centrifugal tendencies in models of electoral choice may not be the best way to account for divergence of issue positions and the strong(er) performance of extremist or euroskeptic platforms in EP elections.

References

A. The Choice Sets of the Member States

Core part of the PIREDEU study on the 2009 EP elections is a post-election survey in the 27 member states of the European Union (cf. http://www.piredeu.org). In each country segment, about 1,000 eligible voters gave been interviewed. Among the altogether 27,069 respondents only 14,913, a little more than 53 percent, indicated a valid vote. We also excluded those voters which have not indicated an individual position on the left-right or European integration dimension, and those voters who have opted for a party with less than ten voters. Below the line, this yields a comprehensive dataset of 12,237 voters; the number of respondents in the individual country segments varies from $N = 157$ voters in Lithuania up to $N = 608$ voters in Sweden.

The three- and four-digit number codes indicate the ParlGov codes for the respective party alternatives (cf. http://www.ParlGov.org). Incumbent parties in national governments are printed in bold letters:

Austria ($N=568$) 973: SPO (Social Democratic Party of Austria), 1013: OVP (Austrian People’s Party), 50: FPO (Freedom Party of Austria), 1536: BZO (Alliance for the Future of Austria), 1429: GRUENE (The Greens – The Green Alternative), 669: HPML (Hans-Peter Martin’s List);

Belgium ($N=335$) 1310: CD &V (Christian Democrats & Flemish), 1110: PVV (Party of Likert and Progress), 1029: SP (Socialist Party), 993: VB (Flemish Block), 1594: AGLGr (Agalev – Groen), 501: NVA (New Flemish Alliance);

Bulgaria ($N=258$) 1160: KzB (Coalition for Bulgaria), 544: NDSV (National Movement Simeon II), 1286: DPS (Movement for Rights and Freedoms), 535: ATA (National Union Attack), 1541: GERB (Citizens for European Development of Bulgaria), 1254: BC (Blue Coalition);

Czech Republic ($N=331$) 789: CSSD (Czech Social Democratic Party), 1245: KDU/CSDL (Christian Democratic Union / People’s Party), 1173: KSCM (Communist Party of Bohemia and Moravia), 829: ODS (Civic Democratic Party), 196: Sz (Green Party); **Bemerkungen:** Nach dem Sturz der Regierung Topolnek II regierte von Mai 2009 bis Juli 2010 eine bergangsregierung; Ministerpräsident war der parteilose Jan Fischer;

Cyprus ($N=608$) 572: AKEL (Progressive Party of Working People), 1575: DISY (Democratic Rally), 851: DIKO (Democratic Party), 563: dEDEK (Socialist Party of Cyprus...
Denmark (N=559) 1629: Sd (Social Democrats), 211: RV (Danish Social-Liberal Party), 590: KF (Conservatives), 1644: SF (Socialist Peoples Party), 1418: DF (Danish Peoples Party);

Estonia (N=278) 113: ERE (Estonian Reform Party), 1137: EK (Centre Party of Estonia), 1597: IRL (Union of Pro Patria and Res Publica), 1448: SDEM (Social Democratic Party – Moderates), 219: EER (Estonian Greens);

Finland (N=551) 395: SSDP (Social Democratic Party of Finland), 94: KESK (Centre Party), 1118: KOK (National Coalition Party), 1427: VAS (Left Alliance), 1062: VIHR (Greens), 585: RKPSFP (Swedish Peoples Party), 1463: KD (Christian Union), 200: SPP (Finnish Party / True Finns);

France (N=331) 1176: LO (Workers’ Struggle), 686: PCF (French Communist Party), 1539: PS (Socialist Party), 873: V (Greens), 937: MoDem (Democratic Movement);

Germany (N=514) 808: CDU (Christian Democratic Union), 558: SPD (Social Democratic Party of Germany), 772: Grue (Alliance 90 / Greens), 1227: Linke (The Left), 543: FDP (Free Democratic Party);

Great Britain (N=399) 1556: Lab (Labour), 773: Con (Conservatives), 1302: LD (Liberal Democrats), 1284: SNP (Scottish National Party), 311: Plaid (Plaid Cymru), 1272: UKIP (United Kingdom Independence Party), 1250: BNP (British National Party);

Greece (N=554) 47: ND (New Democracy), 1338: PASOK (Panhellenic Socialist Movement), 614: KKE (Communist Party of Greece), 1592: SRA (Coalition of the Radical Left), 1179: LAOS (Popular Orthodox Rally), 1280: OP (Ecologist Greens);

Hungary (N=330) 921: Fidesz/MPSz (Fidesz-Hungarian Civic Union), 600: Jobbik (Movement for a Better Hungary), 1591: MSZP (Workers’ Party);

Ireland (N=561) 280: FF (Fianna Fail, Soldiers of Destiny), 1393: FG (Fine Gael – Familiy of the Irish), 1573: Greens (Green Party), 318: Lab (Labour Party), 433: SF (Sinn Fein), 1199: Lib (Libertas Ireland);
Italy (N=447) 596: FI (Go Italy), 1436: LN (North League), 382: PD (Democratic Party), 693: IdV (Italy of Values), 226: UDC (Union of Christian and Centre Democrats), 1321: PRC (Communist Refoundation Party);

Lithuania (N=157) 1045: TSLK (Homeland Union), 1277: LSDP (Lithuanian Social Democratic Party), 1502: TPP (National Resurrection Party), 1421: TTLDP (Order and Justice – Liberal Democratic Party);

Luxembourg (N=578) 310: Greng (The Greens), 701: LSAP (Luxembourg Socialist Workers’ Party), 967: DP (Democratic Party), 1234: CSV (Christian Social People’s Party), 1582: ADR (Alternative Democratic Reform Party), 457: DL (The Left);

Latvia (N=401) 811: TP (People’s Party), 466: ZZS (Green and Farmers’ Union), 1518: JL (New Era), 1100: SC (Harmony Centre), 662: LPP/LC (Latvian First Party / Latvian Way Party), 521: TB/LNNK (For Fatherland and Freedom / LNNK), 1520: PCTVL (For Human Rights in a United Latvia), 445: PS (Civic Union), 962: SCP (Society for Other Politics);

Malta (N=254) 984: PN (Nationalist Party), 1003: MLP (Malta Labour Party);

Poland (N=336) 629: SLD (Democratic Left Alliance), 664: PSL (Polish Peasants’ Party), 512: PO (Civic Platform), 528: PiS (Law and Justice);

Portugal (N=361) 557: BdE (Bloc of the Left), 251: CDSPP (People’s Party), 1295: CDU (Unified Democratic Coalition), 725: PS (Socialist Party), 1273: PSD (Social Democratic Party);

Romania (N=267) 958: PDL (Democratic Liberal Party), 1120: PSD (Social Democratic Party), 1015: PNL (National Liberal Party), 948: UDMR (Democratic Union of Hungarians in Romania), 5: PS (Conservative Party);
Slovakia \((N=299)\) 1142: HZDS (Movement for a Democratic Slovakia), 220: Smer (Direction – Social Democracy), 1364: SDKU (Slovak Democratic and Christian Union), 1612: MOS (Hungarian Civic Party), 1270: E (Coexistence), 1072: SNS (Slovak National Party);

Slovenia \((N=461)\) 1587: DeSUS (Democratic Party of Retired People of Slovenia), 1252: LDS (Liberal Democracy of Slovenia), 16: SLS (Slovenian People’s Party), 981: SNS (Slovenian National Party), 179: SDS (Slovenian Democratic Party), 706: ZLSD (United List – Social Democrats), 326: Zares (Zares), 1047: NSKLS (New Slovenia – Christian People’s Party), 1512: SMS (Youth Party of Slovenia);

Spain \((N=421)\) 645: PP (Popular Party), 902: PSOE (Spanish Socialist Workers Party), 118: IU/PCE (United Left / Communist Party);

Sweden \((N=608)\) 882: V (Left Party (Communists)), 904: SAP (Social Democrats), 1461: C (Centre Party), 892: FP (Liberals), 657: M (Moderate Party), 282: KD (Christian Democrats), 1154: MP (Greens), 1546: SD (Sweden Democrats).
B. Parameters of Unified Proximity and Directional Models

<table>
<thead>
<tr>
<th>Country</th>
<th>$\hat{\alpha}_1$[lr] min.</th>
<th>max.</th>
<th>α_2[ei] min.</th>
<th>max.</th>
<th>$\hat{\beta}_1$[lr] min.</th>
<th>max.</th>
<th>$\hat{\beta}_2$[ei] min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT</td>
<td>0.064</td>
<td>0.045</td>
<td>0.090</td>
<td></td>
<td>0.015</td>
<td>0.009</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>BEL</td>
<td>0.039</td>
<td>0.027</td>
<td>0.063</td>
<td></td>
<td>0.015</td>
<td>0.006</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>BGR</td>
<td>0.063</td>
<td>0.044</td>
<td>0.105</td>
<td></td>
<td>0.011</td>
<td>0.001</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>CYP</td>
<td>0.059</td>
<td>0.048</td>
<td>0.074</td>
<td></td>
<td>0.011</td>
<td>0.003</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>CZE</td>
<td>0.063</td>
<td>0.045</td>
<td>0.094</td>
<td></td>
<td>0.007</td>
<td>0.003</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>DEU</td>
<td>0.079</td>
<td>0.057</td>
<td>0.127</td>
<td></td>
<td>0.023</td>
<td>0.013</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>DNK</td>
<td>0.090</td>
<td>0.067</td>
<td>0.128</td>
<td></td>
<td>0.027</td>
<td>0.015</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>ESP</td>
<td>0.071</td>
<td>0.046</td>
<td>0.132</td>
<td></td>
<td>0.012</td>
<td>0.003</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>EST</td>
<td>0.076</td>
<td>0.054</td>
<td>0.136</td>
<td></td>
<td>0.023</td>
<td>0.007</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td>0.143</td>
<td>0.118</td>
<td>0.184</td>
<td></td>
<td>0.029</td>
<td>0.015</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td>0.075</td>
<td>0.055</td>
<td>0.111</td>
<td></td>
<td>0.003</td>
<td>0.005</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>GBR</td>
<td>0.047</td>
<td>0.031</td>
<td>0.067</td>
<td></td>
<td>0.001</td>
<td>0.010</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>GRC</td>
<td>0.062</td>
<td>0.049</td>
<td>0.090</td>
<td></td>
<td>0.015</td>
<td>0.008</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>HUN</td>
<td>0.108</td>
<td>0.075</td>
<td>0.160</td>
<td></td>
<td>0.013</td>
<td>0.002</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>IRL</td>
<td>0.026</td>
<td>0.019</td>
<td>0.037</td>
<td></td>
<td>0.014</td>
<td>0.005</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>ITA</td>
<td>0.074</td>
<td>0.061</td>
<td>0.104</td>
<td></td>
<td>0.010</td>
<td>0.001</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>LTU</td>
<td>0.038</td>
<td>0.023</td>
<td>0.119</td>
<td></td>
<td>0.017</td>
<td>0.008</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>LUX</td>
<td>0.062</td>
<td>0.044</td>
<td>0.084</td>
<td></td>
<td>0.001</td>
<td>0.013</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>LVA</td>
<td>0.050</td>
<td>0.036</td>
<td>0.072</td>
<td></td>
<td>0.008</td>
<td>0.016</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>MLT</td>
<td>0.051</td>
<td>0.036</td>
<td>0.127</td>
<td></td>
<td>0.007</td>
<td>0.009</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>NLD</td>
<td>0.086</td>
<td>0.067</td>
<td>0.109</td>
<td></td>
<td>0.023</td>
<td>0.014</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td>0.068</td>
<td>0.047</td>
<td>0.112</td>
<td></td>
<td>0.027</td>
<td>0.008</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>PRG</td>
<td>0.103</td>
<td>0.081</td>
<td>0.135</td>
<td></td>
<td>0.011</td>
<td>0.001</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>ROU</td>
<td>0.029</td>
<td>0.021</td>
<td>0.048</td>
<td></td>
<td>0.018</td>
<td>0.007</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>SVK</td>
<td>0.072</td>
<td>0.054</td>
<td>0.112</td>
<td></td>
<td>0.025</td>
<td>0.008</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>SVN</td>
<td>0.040</td>
<td>0.033</td>
<td>0.054</td>
<td></td>
<td>0.018</td>
<td>0.011</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td>0.093</td>
<td>0.070</td>
<td>0.122</td>
<td></td>
<td>0.036</td>
<td>0.023</td>
<td>0.052</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Maximum-Likelihood Estimators for unified models with non-policy covariates and alternative-specific constants:

$$U_i(j) = \sum_{a=1}^{2} \alpha_a \left[2(1 - \beta_{a}^{\text{mix}}) v_{i[a]} p_{j[a]} - \beta_{a}^{\text{mix}} (v_{i[a]} - p_{j[a]})^2 \right] + \gamma t_i + c_j$$

Confidence intervals of the salience (α) and mixing parameters (β) have been established by a non-parametric bootstrap ($N = 100$). Coefficients of the non-policy covariates (γ) and alternative-specific constants have been omitted.
C. Country-Specific Party Locations in Equilibrium

The figures in this Appendix provide some comparisons of predicted equilibria and actual party positions. Within each country segment, the parties have been sorted according to their actual policy positions from the left ascending towards the right. Note that these orderings are not the same across both dimensions of the European political space so that No. 3 in Table C.1 will most probably not match No. 3 in Table C.2.

Notes: For a description of the individual parties cf. Appendix A. For every country, the parties have been sorted by their respective mean placements on the left-right dimension. Note that the black lines and the triangles represent actual party positions, while the two grey shaded lines represent the equilibrium predictions by proximity models with non-policy covariates and by unified models.
C.2. Comparing Equilibrium With Actual Party Locations on the European Integration Dimension

<table>
<thead>
<tr>
<th>Austria</th>
<th>Belgium</th>
<th>Bulgaria</th>
<th>Cyprus</th>
<th>Czech Republic</th>
<th>Denmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estonia</th>
<th>Finland</th>
<th>France</th>
<th>Germany</th>
<th>Israel</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hungary</th>
<th>Ireland</th>
<th>Latvia</th>
<th>Lithuania</th>
<th>Luxembourg</th>
<th>Malta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Netherlands</th>
<th>Poland</th>
<th>Portugal</th>
<th>Romania</th>
<th>Serbia</th>
<th>Slovakia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spain</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: For a description of the individual parties cf. Appendix A. For every country, the parties have been sorted by their respective mean placements on the left-right dimension. Note that the black lines and the triangles represent actual party positions, while the two grey shaded lines represent the equilibrium predictions by proximity models with non-policy covariates and by unified models.